How ancient microbes created massive ore deposits, set the stage for early life on Earth

November 27, 2019

Ancestors of modern bacteria were cultured from an iron-rich lake in Democratic Republic of Congo.

New research in Science Advances is uncovering the vital role that Precambrian-eon microbes may have played in two of the early Earth's biggest mysteries.

University of British Columbia (UBC) researchers, and collaborators from the universities of Alberta, Tübingen, Autònoma de Barcelona and the Georgia Institute of Technology, found that ancestors of modern bacteria cultured from an iron-rich lake in Democratic Republic of Congo could have been key to keeping Earth’s dimly lit early climate warm, and in forming the world’s largest iron ore deposits billions of years ago.

The bacteria have special chemical and physical features that in the complete absence of oxygen allow them to convert energy from sunlight into rusty iron minerals and into cellular biomass. The biomass ultimately causes the production of the potent greenhouse gas methane by other microbes.

"Using modern geomicrobiological techniques, we found that certain bacteria have surfaces which allow them to expel iron minerals, making it possible for them to export these minerals to the seafloor to make ore  deposits," said Katharine Thompson, lead author of the study and PhD student in UBC's department of Microbiology and Immunology.

"Separated from their rusty mineral products, these bacteria then go on to feed other microbes that make methane. That methane is what likely kept Earth’s early atmosphere warm, even though the sun was much less bright than today."

This is a possible explanation to the 'faint-young-sun' paradox, originated by astronomer Carl Sagan. The paradox is that there were liquid oceans on early Earth, yet heat budgets calculated from the early Sun’s luminosity and modern atmospheric chemistry imply Earth should have been entirely frozen. A frozen Earth would not have supported very much life. A methane-rich atmosphere formed in connection to large-scale iron ore deposits and life was initially proposed by University of Michigan atmospheric scientist James Walker in 1987. The new study provides strong physical evidence to support the theory and finds that microscale bacterial-mineral interactions were likely responsible.

"The fundamental knowledge we’re gaining from studies using modern geomicrobiological tools and techniques is transforming our view of Earth's early history and the processes that led to a planet habitable by complex life including humans," said senior author of the paper, Sean Crowe, Canada Research Chair in Geomicrobiology and associate professor at UBC.

"This knowledge of the chemical and physical processes through which bacteria interact with their surroundings can also be used to develop and design new processes for resource recovery, novel building and construction materials, and new approaches to treating disease."

In the future, such geo-microbiological information will likely be invaluable to large-scale geoengineering efforts that might be used to remove from CO2 from the atmosphere for carbon capture and storage, and again influence climate through bacterial mineral interactions.


For more information, contact…

Chris Balma

balma@science.ubc.ca
  • Bacteria + Viruses
  • Earth Sciences
  • Environment + Climate
  • Botany
  • Earth, Ocean and Atmospheric

Musqueam First Nation land acknowledegement

UBC Science acknowledges that the UBC Point Grey campus is situated on the traditional, ancestral, and unceded territory of the xʷməθkʷəy̓əm.

Learn more: Musqueam First Nation

Faculty of Science

Office of the Dean, Earth Sciences Building
2178–2207 Main Mall
Vancouver, BC Canada
V6T 1Z4
UBC Crest The official logo of the University of British Columbia. Urgent Message An exclamation mark in a speech bubble. Arrow An arrow indicating direction. Arrow in Circle An arrow indicating direction. A bookmark An ribbon to indicate a special marker. Calendar A calendar. Caret An arrowhead indicating direction. Time A clock. Chats Two speech clouds. External link An arrow pointing up and to the right. Facebook The logo for the Facebook social media service. A Facemask The medical facemask. Information The letter 'i' in a circle. Instagram The logo for the Instagram social media service. Linkedin The logo for the LinkedIn social media service. Lock, closed A closed padlock. Lock, open An open padlock. Location Pin A map location pin. Mail An envelope. Mask A protective face mask. Menu Three horizontal lines indicating a menu. Minus A minus sign. Money A money bill. Telephone An antique telephone. Plus A plus symbol indicating more or the ability to add. RSS Curved lines indicating information transfer. Search A magnifying glass. Arrow indicating share action A directional arrow. Twitter The logo for the Twitter social media service. Youtube The logo for the YouTube video sharing service.