Quantum mechanics runs hot in a cold plasma: UBC research

March 14, 2018

Particles quench in a disordered web of quantum interactions to form a state of many-body localization.

University of British Columbia researchers have found a new system that could help yield ‘warmer’ quantum technologies.

Quantum technologies such as quantum computers have the potential to process information much more quickly and powerfully than conventional computers. That prospect has spurred interest in exotic, complex quantum phenomena, particularly a state called many-body localization.

Many-body localization occurs when quantum interactions trap particles in a web-like mesh of random locations. This phase of matter protects the energy stored in quantum states from degrading to heat—an effect that could safeguard information in fragile qubits, which are the building blocks of quantum computation.

Up till now efforts to study many-body localization, both theoretically and experimentally, have focussed on quantum systems cooled to temperatures close to absolute zero, or -273° C. 

“The effect has been assumed to occur only under conditions that are very difficult to engineer,” explains UBC chemical physicist Ed Grant. “So far, most evidence for many-body localization has been found using atoms arrayed in space by crossed laser fields. But arrangements like these last only as long as the light is on and are as easily disrupted as ripping a piece of tissue paper."                                                

In the latest issue of Physical Review Letters, Grant and theoretical physicist John Sous describe the results of an experiment in which laser pulses gently lift a large number of molecules in a gas of nitric oxide to form an ultracold plasma.

The plasma, consisting of electrons, ions and Rydberg molecules (NO+ ions orbited by a distant electron), self-assembles and appears to form a robust many-body localized state. The researchers believe the plasma ‘quenches’ to achieve this state naturally, without needing a web of laser fields – no more ripping apart. 

Just as importantly, the system doesn’t have to start at a temperature near absolute zero. The mechanism of self-assembly operates naturally at high temperature, seemingly leading to a spontaneous state of many-body localization.

“This could give us a much easier way to make a quantum material, which is good news for practical applications,” says Grant.


For more information, contact…

Geoff Gilliard

  • Quantum Physics
  • Chemistry
  • Physics and Astronomy

Musqueam First Nation land acknowledegement

UBC Science acknowledges that the UBC Point Grey campus is situated on the traditional, ancestral, and unceded territory of the xʷməθkʷəy̓əm.

Learn more: Musqueam First Nation

Faculty of Science

Office of the Dean, Earth Sciences Building
2178–2207 Main Mall
Vancouver, BC Canada
V6T 1Z4
UBC Crest The official logo of the University of British Columbia. Urgent Message An exclamation mark in a speech bubble. Arrow An arrow indicating direction. Arrow in Circle An arrow indicating direction. A bookmark An ribbon to indicate a special marker. Calendar A calendar. Caret An arrowhead indicating direction. Time A clock. Chats Two speech clouds. External link An arrow pointing up and to the right. Facebook The logo for the Facebook social media service. A Facemask The medical facemask. Information The letter 'i' in a circle. Instagram The logo for the Instagram social media service. Linkedin The logo for the LinkedIn social media service. Lock, closed A closed padlock. Lock, open An open padlock. Location Pin A map location pin. Mail An envelope. Mask A protective face mask. Menu Three horizontal lines indicating a menu. Minus A minus sign. Money A money bill. Telephone An antique telephone. Plus A plus symbol indicating more or the ability to add. RSS Curved lines indicating information transfer. Search A magnifying glass. Arrow indicating share action A directional arrow. Twitter The logo for the Twitter social media service. Youtube The logo for the YouTube video sharing service.