Pulp fact: How enzyme tech could lead to better paper, textile products

April 25, 2016

Harry Brumer (center), posing next to new biomolecule analyses equipment provided by Waters Ltd. Source: Brumer Lab, UBC Science.

Harry Brumer’s focus is the development of better forest products. The UBC biochemist recently received funding from NSERC to support his enzyme genomic research, which will advance the development of new technology for cellulose-fibre modification. Brumer’s lab is also celebrating the arrival of new biomolecule analysis equipment provided by Waters Ltd.

What kind of work goes on in your lab?

We use genomics and biochemical tools to study the natural diversity of enzymes and their functions, trying to map those which haven’t been explored. Enzymes are proteins with catalytic functions, which means they enhance chemical reactions. They are involved in the processes that build-up or break-down plant materials. Because plants are used in many ways by people, our research spans a range of activities from biomaterials development to understanding how gut bacteria help us digest dietary fibre.

Why is this important?

Breaking down or modifying plant biomass, to create biofuels, biochemicals, and biomaterials, is challenging. Plants have evolved to be very stable. Part of this stability arises from the tremendous complexity of the carbohydrates – polysaccharides – that make-up their cell walls.  Figuring out which enzymes can surgically take apart certain components of plant cell walls expands our biotech “tool kit.” Having the right tools gives us the potential to develop products from renewable plant resources more cheaply and efficiently.

Can you tell me about some of the practical applications of your enzymology research?

One of the projects we’ve been recently working on is the development of bioactive papers and other cellulose-based materials. Using direct visual indicators, such as fluorescence or colour changes, we can detect biomolecules including DNA and enzymes. These biosensors have application potential in many areas including smart packages to detect food spoilage, or advanced wound dressings to speed healing. Compared with synthetic materials, cellulose fibre-based devices are attractive because they are low cost, environmentally friendly, and beneficial in locations where resources are limited. Other enzyme technology we are developing can be used to create stronger materials at larger scales suitable for bulk products like packaging materials.

Why is this type of research particularly important in British Columbia?

British Columbia has a strong forest sector. We want to make the most out of our abundant natural resources by making new, clever products, and finding ways to manufacture them more efficiently. Enzymology provides the tools to achieve this. 


For more information, contact…

Geoff Gilliard

geoff.gilliard@ubc.ca 604-827-2001
  • New Materials
  • Plants
  • Chemistry

Musqueam First Nation land acknowledegement

We honour xwməθkwəy̓ əm (Musqueam) on whose ancestral, unceded territory UBC Vancouver is situated. UBC Science is committed to building meaningful relationships with Indigenous peoples so we can advance Reconciliation and ensure traditional ways of knowing enrich our teaching and research.

Learn more: Musqueam First Nation

Faculty of Science

Office of the Dean, Earth Sciences Building
2178–2207 Main Mall
Vancouver, BC Canada
V6T 1Z4
UBC Crest The official logo of the University of British Columbia. Urgent Message An exclamation mark in a speech bubble. Arrow An arrow indicating direction. Arrow in Circle An arrow indicating direction. A bookmark An ribbon to indicate a special marker. Calendar A calendar. Caret An arrowhead indicating direction. Time A clock. Chats Two speech clouds. External link An arrow pointing up and to the right. Facebook The logo for the Facebook social media service. A Facemask The medical facemask. Information The letter 'i' in a circle. Instagram The logo for the Instagram social media service. Linkedin The logo for the LinkedIn social media service. Lock, closed A closed padlock. Lock, open An open padlock. Location Pin A map location pin. Mail An envelope. Mask A protective face mask. Menu Three horizontal lines indicating a menu. Minus A minus sign. Money A money bill. Telephone An antique telephone. Plus A plus symbol indicating more or the ability to add. RSS Curved lines indicating information transfer. Search A magnifying glass. Arrow indicating share action A directional arrow. Spotify The logo for the Spotify music streaming service. Twitter The logo for the Twitter social media service. Youtube The logo for the YouTube video sharing service.