We're revamping our site. Take the UBC Science website survey for a chance to win one of three gift cards.

‘Trojan’ asteroids in far reaches of Solar System more common than previously thought: UBC research

 

This 2006 image taken by the Hubble Space Telescope shows bands and a new dark spot in Uranus' atmosphere.Credit: NASA/Space Telescope Science Institute.

August 29, 2013

UBC astronomers have discovered the first Trojan asteroid sharing the orbit of Uranus, and believe 2011 QF99 is part of a larger-than-expected population of transient objects temporarily trapped by the gravitational pull of the Solar System’s giant planets.

Trojans are asteroids that share the orbit of a planet, occupying stable positions known as Lagrangian points. Astronomers considered their presence at Uranus unlikely because the gravitational pull of larger neighbouring planets would destabilize and expel any Uranian Trojans over the age of the Solar System.

View a video of QF99: http://www.youtube.com/watch?v=fzzbtP2uRlU

To determine how the 60 kilometre-wide ball of rock and ice ended up sharing an orbit with Uranus the astronomers created a simulation of the Solar System and its co-orbital objects, including Trojans.

“Surprisingly, our model predicts that at any given time three per cent of scattered objects between Jupiter and Neptune should be co-orbitals of Uranus or Neptune,” says Mike Alexandersen, lead author of the study to be published tomorrow in the journal Science. This percentage had never before been computed, and is much higher than previous estimates.

Several temporary Trojans and co-orbitals have been discovered in the Solar System during the past decade. QF99 is one of those temporary objects, only recently (within the last few hundred thousand years) ensnared by Uranus and set to escape the planet’s gravitational pull in about a million years.

“This tells us something about the current evolution of the Solar System,” says Alexandersen. “By studying the process by which Trojans become temporarily captured, one can better understand how objects migrate into the planetary region of the Solar System.”

UBC astronomers Brett Gladman, Sarah Greenstreet and colleagues at the National Research Council of Canada and Observatoire de Besancon in France were part of the research team.


UBC Science Media Contacts

Chris Balma
Communications
UBC Science
balma@science.ubc.ca
604.822.5082
604.202.5047 (c)

Silvia Moreno-Garcia
Coordinator, Communications
silvia.moreno-garcia@science.ubc.ca
604.827.5001

a place of mind, The University of British Columbia

UBC Faculty of Science, Office of the Dean
Earth Sciences Building, 2178-2207 Main Mall
Vancouver, BC, V6T 1Z4 | Map to ESB

Emergency Procedures | Accessibility | Contact UBC | © Copyright The University of British Columbia