The mathematics behind disease: mapping the virus inside the body

June 10, 2015

Scanning electromicrograph of an HIV-infected T cell. Source: NIAID.

By Adriana Suarez-Gonzalez

A viral infection is a complex, dynamic process. UBC researcher Daniel Coombs uses theoretical and applied mathematics to understand how viruses, such as HIV, function and spread within one person’s body and across individuals. Rumor has it that he is the only math professor at UBC that owns a microscope.

What are your main areas of research?

I use mathematics to study infection disease dynamics and immune cell function inside a person . By applying mathematical models, I explore how viral infections such as HIV change over time, and how immune cells use signalling networks to detect pathogens. I also collaborate with different research groups working in epidemiology and contribute with the modelling of infectious diseases.

What was your most recent work on within host infection disease dynamics?

When a person is infected with HIV and goes under antiretroviral treatment, their viral level becomes so low that it’s undetectable in routine lab tests. But this doesn’t mean the virus is gone. It remains silent inside cells - called latent cells – that do not express the virus. If treatment is interrupted, latent cells are activated and the virus starts replicating exponentially, reaching high viral levels. We used mathematical models to recreate this process and estimated how long it would take for antiretroviral therapy to kill all infected cells, including latent ones. Or, in other words, how many years of antiretroviral therapy a person would need to be cured. Our models show that it would take at least 25 to 50 years, but also that infection recovery happens in different ways. These results could be used as platforms for future experimental work in clinical trials.

What is a mathematician doing with a microscope?

We’re using microscopy to study how B-cells, a type of highly specialised immune cell, respond to infection. A technique called single particle tracking allows us to label proteins on the surface of the cells and track each cell individually. First, we observe the cells — more specifically the fluorescent receptors on the surface of the cells — in the microscope. Then we use multiple modelling approaches to gain insights on cell mobility when microbial molecules are present. Our findings have elucidated new mechanisms for B-cell receptors signalling, and could be used to develop therapeutic targets for treating certain types of B-cell malignancies or autoimmune diseases.


For more information, contact…

Geoff Gilliard

geoff.gilliard@ubc.ca 604-827-2001
  • Bacteria + Viruses
  • Mathematics
  • Microbiology and Immunology

Musqueam First Nation land acknowledegement

We honour xwməθkwəy̓ əm (Musqueam) on whose ancestral, unceded territory UBC Vancouver is situated. UBC Science is committed to building meaningful relationships with Indigenous peoples so we can advance Reconciliation and ensure traditional ways of knowing enrich our teaching and research.

Learn more: Musqueam First Nation

Faculty of Science

Office of the Dean, Earth Sciences Building
2178–2207 Main Mall
Vancouver, BC Canada
V6T 1Z4
UBC Crest The official logo of the University of British Columbia. Urgent Message An exclamation mark in a speech bubble. Arrow An arrow indicating direction. Arrow in Circle An arrow indicating direction. A bookmark An ribbon to indicate a special marker. Calendar A calendar. Caret An arrowhead indicating direction. Time A clock. Chats Two speech clouds. External link An arrow pointing up and to the right. Facebook The logo for the Facebook social media service. A Facemask The medical facemask. Information The letter 'i' in a circle. Instagram The logo for the Instagram social media service. Linkedin The logo for the LinkedIn social media service. Lock, closed A closed padlock. Lock, open An open padlock. Location Pin A map location pin. Mail An envelope. Mask A protective face mask. Menu Three horizontal lines indicating a menu. Minus A minus sign. Money A money bill. Telephone An antique telephone. Plus A plus symbol indicating more or the ability to add. RSS Curved lines indicating information transfer. Search A magnifying glass. Arrow indicating share action A directional arrow. Spotify The logo for the Spotify music streaming service. Twitter The logo for the Twitter social media service. Youtube The logo for the YouTube video sharing service.